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Notes for the course REAL ANALYSIS

5 The spaces L
5.1 Basics
Lemma 5.1. Let a,b >0 and p > 1. Then,

<a+b)p<ap+bp
2 - 2

Let a,b >0 and p > 1. Set q such that 1/p+1/q = 1. Then,

al/rpl/a < & 4
p

| o

Proof. Exercise. O

Definition 5.2. Let X be a measure space with measure p and p > 0.
LP(X, 1, K) := {f : X — Kmeasurable : ||’ integrable} .

Define also the function || - ||, : £P(X, u, K) — R{ given by

1= ( [ 197) "

Proposition 5.3. The set LP(X,u,K) for p € (0,00) is a wvector space.
Also, || - ||, is multiplicative, i.e., ||\f|l, = [A||fllp for all X € K and f € LP.
Furthermore, if p < 1 the function d, : LP(X, 1, K) x LP(X, p,K) — [0, 00)
gwen by dy(f,9) == ||f — gllb is a pseudo-metric (i.e., satisfies the azioms of
a metric except for definiteness).

Proof. Exercise. O

Definition 5.4. Let X be a measure space with measure u. We call a
measurable function f : X — K essentially bounded iff there exists a bounded
measurable function g : X — K such that ¢ = f almost everywhere. We
denote the set of essentially bounded functions by £°(X, u, K). Define also
the function || - ||oo : L2(X, 1, K) — R given by

| flloo :=inf{||g||sup : ¢ = fa.e. and g bounded measurable}.

Proposition 5.5. The set L®(X, u,K) is a vector space and || - ||oo 5 @
Seminorm.

Proof. Exercise. 0
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Proposition 5.6. Let f,g be measurable maps such that f = g almost ev-
erywhere. Let p € (0,00]. Then, f € LP iff g € LP.

Proof. Apply Proposition 4.12 to | f|P and |g|P. O

Proposition 5.7. Let f € LP for p € (0,00). Then, f vanishes outside of a
o-finite set.

Proof. By Proposition 4.13, | f|P vanishes outside a o-finite set and hence so

does f. O
Proposition 5.8. Let f € L£L>*. Then, the set {x : |f(x)] > ||f|leo} has
measure zero. Moreover, there exists g € L bounded such that g = f
almost everywhere and ||gllsup = [|gllcc = [ f lloo-

Proof. Fix ¢ > 0 and consider the set A. := {x : |f(z)] > ||fllc + ¢}
Since there exists a bounded measurable function g such that g = f almost
everywhere and [|g||sup < || f]|oo+c we must have j1(A.) = 0. Thus {4, nen
is an increasing sequence of sets of measure zero. So, their union A :=
Unen An = {z : |[f(2)] > || flloc} must have measure zero. Define now

(z) = flx) ifreX\A
T=N0 dtwea

Then, g is measurable, bounded, and g = f almost everywhere. Moreover,
llgllsup < | fllo- On, the other hand, since g = f almost everywhere we
must have ||g[/sup > || flloo by the definition of || - ||s. Also, f —g¢ = 0 almost
everywhere and hence ||f — gllooc < ||0llsup, i-€., ||f — gllcc = 0 and thus

[flloo = llglloo- O

Proposition 5.9. Let f € LP for p € (0,00]. Then ||f|l, = 0 iff f =0
almost everywhere.

Proof. If p < oo apply Proposition 4.21 to |f|P. Exercise.Complete the
proof for p = co. O

Theorem 5.10 (Holder’s inequality). Let p € [1,00] and q such that 1/p +
1/q=1. Given f € LP and g € L we have fg € L' and,

1fglle < [ fllpllglq-

Proof. First observe that fg is measurable by Proposition 3.18 since f and
g are measurable.

We start with the case p = 1 and ¢ = co. (The case ¢ = 1 and p = oo
is analogous.) By Proposition 5.8 there is a bounded function h € £ such
that h = ¢ almost everywhere and ||h||sup = ||9]|cc. We have

|fh| S |f|||hHsuP‘
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Thus, |fh| is bounded from above by an integrable function and hence fh is
integrable by Proposition 4.27. But fh = fg almost everywhere and so fg is
integrable by Proposition 4.12. Moreover, integrating the above inequality
over X we obtain,

ol = [ 191 = [ 1780 < Ihllan [ 171 = 1710l

It remains to consider the case p € (1,00). If || f||, = 0 or ||g|[; = 0 then
f or g vansihes almost everywhere by Proposition 5.9. Thus, fg vanishes
almost everywhere and || fg||; = 0 by the same Proposition (and in particular
fg € £1). We thus assume now || f|, # 0 and ||g||, # 0. Set
q
and b:= 91

ISP
a:= 7 = 7-
Hpr ||9Hq

Using the second inequality of Lemma 5.1 we find,

LIflP 1 g/
| fgl S_\f\ﬁ_lg\q'
1fllpllglle = 2 IFIE — allglg

This implies that |fg| is bounded from above by an integrable function and
is hence integrable by Proposition 4.27. Moreover, integrating both sides of
the inequality over X yields the inequality that is to be demonstrated. [

Proposition 5.11 (Minkowski’s inequality). Let p € [1,00] and f,g € LP.
Then,
1f + gllp < [If1lp + [lgllp-

In particular, || - ||, is a seminorm.

Proof. The case p =1 is already implied by Proposition 4.15 while the case
p = oo is implied by Proposition 5.5. We may thus assume p € (1,00). Set
q such that 1/p+ 1/g = 1. We have,

[f +glP < IFIIf+ 9P~ +1gllf + gl

Notice that |f 4+ g|[P~! € £7 so that the two summands on the right hand
side are integrable by Theorem 5.10. Integrating on both sides and applying
Holder’s inequality to both summands on the right hand side yields,

1F + g5 < IF1l1F + 9P~ Hlg + Ngllplllf + glP~"llg
Noticing that [||f + gP~ |l = [If +glf ™" we find,
1F +gllp < (1£F1lp + Ngllp)ILf + gl

Dividing by || f + gHg_1 yields the desired inequality. This is nothing but
the triangle inequality for || - [[,. The other properties making this into a
seminorm are immediately verified. U
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Theorem 5.12. Let p € [1,00) and {fn}nen be a Cauchy sequence in LP.
Then, the sequence converges to some f € LP in the || - ||,-seminorm. That
1s, LP is complete. Furthermore, there exists a subsequence which converges
pointwise almost everywhere to f and for any € > 0 converges uniformly to
f outside of a set of measure less than e.

Proof. Since {fy,}nen is Cauchy, there exists a subsequence {f,, }xen such
that
e = Frellp <272 VE€EN and V> k.

Define
Vi = {2 € X ¢ |fupp, (@) = fop(2)] > 27F} VEeEN.

Then,
2_kp/~‘(yk) < /Y | frggr = frn P < /X | frper — frl? < 2727 vk e N.
&

This implies, p(Yz) < 27% < 27% for all k € N. Define now Z; := (32, Y
for all j € N. Then, u(Z;) <27 for all j € N.

Fix € > 0 and choose j € N such that 277 < e. Let z € X \ Z;. Then,
for £k > j we have

|fnk+1(x) - fnk($)‘ < 27]{.

Thus, the sum Y 7 fn, ., (z) — fn, () converges absolutely. In particular,
the limit

f(x) = llir&fm( = fr(z +me+1 fm( )

exists. For all k£ > j we have the estimate,

|f (@) = fuy (2 me — Fri@)| <D [ frg (@) = fry ()] < 217F
=k

Thus, {fn, }xen converges to f uniformly outside of Z;, where pu(Z;) < e.

Repeating the argument for arbitrarily small € we ﬁnd that f is defined on
X\Z, where Z := ;2 Z;. Furthermore, { fy, }ren converges to f pointwise
on X \ Z. Note that u(Z) = 0. By Theorem 3.19, f is measurable on X \ Z.
We extend f to a measurable function on all of X by declaring f(x) = 0 if
T € Z.

For fixed k& € N consider the sequence {g;}en of integrable functions
given by

9= |fn, — fri |7

Since the sequence { [y gi}ien is bounded, liminf; .o [y g; exists and we
can apply Proposition 4.25. Thus, there exists an integrable function g and
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g(x) = liminf;_, g;(z) almost everywhere. We conclude that g = [f — f,,, |P
almost everywhere. In particular, since g is integrable, f — f,, € £? and so
also f € LP. Moreover,

/ |f = fral? < liminf/ | fry — fanlP < 9—2kp.
X l—oo Jx

In particular,
If = Farllp < 27

So { fn, }ken and therefore also { fy, }nen converges to f in the ||-||,-seminorm.
O

Theorem 5.13. Let {fn}nen be a Cauchy sequence in L. Then, the se-
quence converges uniformly almost everywhere to a function f € L£%°. Fur-
thermore, the sequence converges to f in the L®-seminorm. In particular,
L% is complete.

Proof. Define Z,, := {z € X : |f(z)| > ||fulloc} for all n € N and Y,, ,,, :=

{z € X :|fu(x) = fin(x)| > ||fr — fmlloo}. By Proposition 5.8 u(Z,) = 0 for
all n € N and p(Y,,,m) = 0 for all n,m € N. Define

7= (U Zn> ul U Yam

neN n,meN

Then, u(Z) = 0. So, {fn(z)}nen converges uniformly on X \ Z to some
measurable function f. We extend f to a measurable function on all of X
by defining f(x) =0 if z € Z. Exercise.Complete the proof. O

Theorem 5.14 (Dominated Convergence Theorem in £P). Let p € [1,00).
Let {fn}nen be a sequence of functions in LP such that there exists a real
valued function g € LP with |f,| < g for all n € N. Assume also that
{fn}nen converges pointwise almost everywhere to a measurable function f.
Then, f € LP and {fn}nen converges to f in the || - ||,-seminorm.

Proof. Exercise.Prove this by suitably adapting the proof of Theorem 4.26.
Hint: Replace |fn, — fm| by |fn — fm|P, and apply Theorem 5.12 instead of
Proposition 4.22. [l

Proposition 5.15. Let p € [1,00). Then, S C LP is a dense subset.

Proof. If f is an integrable simple function f, then |f[P is also integrable
simple. So, § is a subset of £P. Now consider f € LP. We need to con-
struct a sequence of integrable simple functions that converges to f in the
|| - ||p-seminorm. Exercise.Do this by appropriately modifying the proof of
Proposition 4.27. [l
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Proposition 5.16. The simple maps form a dense subset of L.

Proof. Let f € L% and fix ¢ > 0. The statement follows if we can show that
there exists a simple map h such that || f — |l < €. By Proposition 5.8 there
is a bounded map g € L such that g = f almost everywhere and ||g||sup =
I flloo- Since g is bounded, its image A C K is bounded and thus contained
in a compact set. This means that we can cover A by a finite number
of open balls {Bj}reqi,... ny of radius e. Denote the centers of the balls by
{Tk}reqr,...,ny- Now take measurable subsets Cy, C By, such that C;NC; = 0 if
i # 7 while still covering A4, i.e., A C Uk€{17...7n} Ck. (Exercise.Explain how
this can be done.) Define Dy, := g~ (Ck). {Di}req,... xy form a measurable
partition of X. Now set h(z) := zy if x € Dy. Then, h is simple and
1 = hlloe = 19— Blleo < llg — hllsup < €. O

Exercise 23. The Monotone Convergence Theorem (Theorem 4.23) and the
Dominated Convergence Theorem (Theorem 4.26 or 5.14) are not true in £°.
Give a counterexample to both. More precisely, give a pointwise increasing
sequence {fy}nen of real non-negative valued functions f, € £% on some
measure space X such that {f,}n,en converges pointwise to some f € £,
but {f}nen does not converge to any function in the || - ||oo-seminorm.

5.2 Banach and Hilbert spaces

Definition 5.17. Let V. W be normed vector spaces. Then, a linear map
oV — W is called bounded iff there exists a constant ¢ > 0 such that

la@)|lw < vy Vv eV.

Proposition 5.18. Let V,W be normed vector spaces. Then, a linear map
a:V — W is bounded iff it is continuous.

Proof. Exercise. O

A complete normed vector space is also called a Banach space. We have
seen already that the spaces £P with p € [1,00] are vector spaces with a
seminorm || - ||, and are complete with respect to this seminorm. In order to
convert a vector space with a seminorm into a vector space with a norm, we
may quotient by those elemnts whose seminorm is zero.

Proposition 5.19. Let V' be a vector space with a seminorm ||-||y . Consider
the subset A := {v € V : |jv|ly = 0}. Then, A is a vector subspace. Moreover
v~ w <= v—w € A defines an equivalence relation and W :=V/ ~ is a
vector space. The seminorm || - ||y decends to a norm on W wia ||[v]||w =
lv||v forv e V. Also, if V is complete with respect to the seminorm || - ||v,
then W is complete with respect to the norm || - ||w .
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Proof. If v € A and A € K then Av € A since || Av|ly = |[A|||v|ly = 0. Also,
if v,w € A, then v +w € A because ||[v+ w|y < [|v||yv + ||w|]ly = 0 by the
triangle inequality. So, A is a vector subspace. That ~ is an equivalence
relation follow from the fact that A is a vector space: ~ is refexive because
v—v =0 € A, it is symmetric because from u — v € A follows v — u € A,
and it is transitive because from u—v € A and v —w € A follows u —w € A.
In order to give W a vector space structure we want to define A[v] := [Av]
for v € V and A € K and [v] + [w] := [v + w] for v,w € V. We have to
show that these definitions are well. Suppose v € V and a € A. Then,
Av + a] = [A + Aa] = [Mv] = A[v] as required. Similarly, for v,w € V and
a,b € Awe have [v+a]+[w+b =v+w+a+bd =[v+w = [v] + [w]
as required. For || - |lw we check first that it is well defined. Let v € V' and

a € A Then, [[v+allw = |lv+allv < [ollv + llallv = [lvllv = [[[v]llw-
But also, [[[v+alllw = [[v+allv = |lvllv — || = allv = [lv]lv = [|[v]|w. This
shows that || - | is well defined. Exercise.Show that || - ||y is a norm and
that the space W is complete if V' is complete. O

Definition 5.20. Let p € [1,00]. Then the quotient space £P/ ~ in the
sense of Proposition 5.19 is denoted by LP. It is a Banach space.

Banach spaces have many useful properties that make it easy to work
with them. So usually, one works with the spaces LP instead of the spaces
LP. Nevertheless one can still think of the these as "spaces of functions"
even though they are spaces of equivalence classes. But (because of Propo-
sition 5.9) two functions are in one equivalence class only if they are "essen-
tially the same" i.e., equal almost everywhere.

Proposition 5.21. Let p,q € (0,00] and set r € (0,00] such that 1/r =
1/p+1/q. Then, given f € LP and g € L? we have fg € L". Moreover, the
following inequality holds,

1£gllr < 11fllpllgllq-

Proof. Exercise.[Hint: For f € £P and g € £? apply Holder’s Theorem
(Theorem 5.10) to |f|" and |g|", in the case r < oco. Treat the case r = oo
separately.| O

Proposition 5.22. Let 0 < p < g <r < oo. Then, LPLNL" C L1. Moreover,
if r < oo,
IFI4C=P) < | FIBT=D (| f|l5e ) VfeLrnLr.

If r = oo we have,
111G < WAZIAIE? Vf e £Pn L.

If p > 1, then also LP N L™ C LY.
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Proof. Exercise. O

Proposition 5.23. Let X be a measure space with finite measure p. Let
0<p<qg<oo. Then, LY9(X,u) C LP(X, u). Moreover,

1£llp < 11 llq (X)YP=H9 v f € £L9X, ).
If p > 1, then also LY(X,u) C LP(X, p).
Proof. Exercise. O

Definition 5.24. Let V' be a complex vector space and (-,-) : V. xV — C a
map. (-,-) is called a sesquilinear form iff it satisifes the following properties:

e (u+v,w) = (u,w)+ (v,w) and
(u,v +w) = (u,v) + (u, w) for all u,v,w € V.
e (\u,v) = Au,v) and (u, \v) = Mu,v) for all A € C and v € V.

(-,-) is called hermitian iff it satisifes in addition the following property:

o (u,v) = (v,u) for all u,v € V.

(-,-) is called positive iff it satisifes in addition the following property:
o (v,u) >0forallveV.

(-,-) is called definite iff it satisifes in addition the following property:
o If (v,v) =0thenv=0forallveV,

Proposition 5.25 (from Lang). Let V be a complex vector space with a
positive hermitian sesquilinear form (-,-) : V. xV — C. Ifv € V is such that
(v,v) =0, then (v,w) = (w,v) =0 for allw e V.

Proof. Suppose (v,v) = 0 for a fixed v € V. Fix some w € V. For any t € R
we have,
0 < (tv + w, tv + w) = 2t R((v, w)) + (w, w).

If R((v,w)) # 0 we could find ¢ € R such that the right hand side would
be negative, a contradiction. Hence, we can conclude R({v,w)) = 0, for all
w € V. Thus, also 0 = R((v,iw)) = R(—i{v,w)) = F((v,w)) for all w € V.
Hence, (v,w) =0 and (w,v) = (v,w) =0 for all w € V. O

Theorem 5.26 (Schwarz Inequality). Let V be a complex vector space with
a positive hermitian sesquilinear form (-,-) : V.- xV — C. Then, the following
equality 1s satisfied:

(v, w)]? < (v,v){w,w) Yov,w e V.
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Proof. 1f (v,v) = 0 then also (v, w) = 0 by Proposition 5.25 and the inequal-
ity holds. Thus, we may assume « := (v,v) # 0 and we set § := —(w,v).
By positivity we have,

0 < (v + aw, fv + aw).
Using sesquilinearity and hermiticity on the right hand side this yields,
0< ‘<U>U>|2<wvw> - <’U,U>|<U,’UJ>‘2.

(Exercise.Show this.) Since (v,v) # 0 we can divide by it and arrive at the
required inequality. O

Proposition 5.27. Let V' be a complex vector space with a positive hermitian
sesquilinear form (-,-) : V. xV — C. Then, V carries a seminorm given by

||| == +/(v,v). If {-,-) is also definite then | - || is a norm.

Proof. Exercise.Hint: To prove the triangle inequality, show that |Jv+w|? <
(Jlvl|+lw|))? can be derived from the Schwarz inequality (Theorem 5.26). O

Definition 5.28. A positive definite hermitian sesquilinear form is also
called an inner product or a scalar product. A complex vector space equipped
with such a form is called an inner product space or a pre-Hilbert space. It
is called a Hilbert space iff it is complete with respect to the induced norm.

Theorem 5.29. Let H be a Hilbert space and o : H — K a bounded linear
map. Then, there exists a unique element w € H such that

a(v) = (v,w) Yve H.

Proposition 5.30. Consider the map (-,-) : L2 x L2 — C given by

r9)= [ fo.

Then, (-,-) is a positive hermitian sesquilinear form on L2. Moreover, the
seminorm induced by it according to Proposition 5.27 is the || - ||2-seminorm.
Also, the map (-,-) : L2x L2 — C given by ([f],[9]) := (f,g) defines a positive
definite hermitian sesquilinear form on L2. The norm induced by it is the
| - [2-norm. This makes L% into a Hilbert space.

Proof. Exercise. 0
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5.3 Relations between measures

Proposition 5.31. Let X be a measured space with o-algebra M. Let p1, po
be positive measures on M. Then, p = p1 + po is a positive measure on

(X, M). Moreover, L' (p) = L (p1) N LY (u2) and

/Afduz/Afder/Afduz Ve Ll (u)Ac M.

Proof. Exercise. O

Definition 5.32 (Complex Measure). Let X be a measured space with o-
algebra M. Then, a map pu : M — C is called a compler measure iff it
is countably additive, i.e., satisfies the following property: If {A,}nen is a
sequence of elements of M such that A, N A,, = 0 if n # m, then

1 <U An) = gu(/ln)-

neN

Remark 5.33. 1. The above definition implies p(@)) = 0. 2. The convergence
of the series in the definition is absolute since its limit must be invariant
under reorderings. 3. In contrast to positive measures, a complex measure is
always finite.

Exercise 24. Show that the complex measures on a given o-algebra form a
complex vector space.

Definition 5.34. Let X be a measured space with o-algebra M. Let u
be a positive measure on (X, M) and v a positive or complex measure on
(X, M). We say that v is absolutely continuous with respect to p, denoted
v < piff p(A) =0 implies v(A) =0 for all A € M.

Definition 5.35. Let X be a measured space with g-algebra M. Let pu be
a positive or complex measure on (X, M). We say that p is concentrated on
Ae Miff f(B)=pu(BnNA) for all B e M.

Definition 5.36. Let X be a measured space with o-algebra M. Let pu, v be
positive or complex measures on (X, M). We say that u and v are mutually
singular, denoted p 1 v, iff there exist disjoint sets A, B € M such that u
is concentrated on A and v is concentrated on B.

Proposition 5.37. Let p be a positive measure and v, vy, be positive or
complex measures.

1. If p is concentrated on A and v < p, then v is concentrated on A.
2. If vy < pand vy L p, then v L vo.

3. Ifv<uandv L pu, then v =0.



Robert Oeckl - RA NOTES 4 — 15/06/2009 11

4. If v < poand vy < p, then vy + 19 < p.
5 If vy Lvand vy L v, then vy + vy L v,
Proof. Exercise. O

Theorem 5.38 (Averaging Theorem). Let X be a measure space with o-
finite measure . Let S C K be a closed subset and f € LY(X,u,K). If for
any measurable set A of finite measure we have

)

— du € 5,
1(A) Ja fdi
then f(z) € S for almost all x € X.

Proof. Let C := {x € X : f(x) ¢ S}. We need to show that u(C) = 0.
Assume the contrary, i.e., u(C') > 0. Write K\ S = (J,,cy Bn as a countable
union of open balls { B, }nen. Their preimages are measurable and cover C.
There is at least one open ball By, such that u(f~*(B,)) > 0. Say this open
ball has centre x and radius r. Furthermore, there is a measurable subset
D C f~1(B,) such that 0 < (D) < oco. Then,

w7 = o

1 1
<m/jj\f—x|du<m/])rdu—r.

In particular, ﬁ Jp fdu € By. But B, NS =0, so we get a contradiction
with the assumptions. [l

Exercise 25. 1. Explain where in the above proof o-finiteness was used.
2. Extend the proof to the case where yu is not o-finite by replacing f(x) € S
with f(z) € SU{0} in the statement of the Theorem.

Lemma 5.39. Let f € L' and assume J4 f =0 for all measureable sets A.
Then, f =0 almost everywhere.

Proof. Exercise. 0

Lemma 5.40. Let X be o measure space with o-finite measure p and let
p € (0,00). Then, there exists a function w € LP(X, p) such that 0 < w < 1.

Proof. Let {X,,}nen be a sequence of disjoint sets of finite measure such that
X = Unen Xn- Define

9—n 1/p )

This has the desired properties. Exercise.Show this. O
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Theorem 5.41. Let X be a measure space with o-algebra M and o-finite
measure (. Let v be a finite measure on (X, M).

1. (Lebesgue) Then, there exists a unique decomposition
V = Vg + Vs,
into finite measures such that v, < p and vy L p.

2. (Radon-Nikodym) There exists a unique [h] € L*(u) such that for all
AeM,

Va(A) = /Ahdu.

Proof. We first show the uniqueness of the decomposition v = v, + v, in
(1.). Suppose there is another decomposition v = v/, + v.. Note that all
the measures involved here are finite and thus are also complex measures.
In particular, we obtain the following equality of complex measures, v, —
v, = v, — vs. However, by Proposition 5.37 the left hand side is absolutely
continuous with respect to p while the right hand side is singular with respect
to p. Again by Proposition 5.37, the equality of both sides implies that they
must be zero, i.e., v, = v, and v, = v;.

To show the uniqueness of [h] € L!(u) in (2.) we note that given another
element [h] € L!(y) with the same property, we would get [, (h—h')du =0
for all measurable sets A. By Lemma 5.39 then 0 = [h — h'] = [h] — [W/] €
L' ().

We proceed to construct the decomposition v = v, + vy and the element
[h] € L1(1). By Lemma 5.40, there is a function w € £1(p) with 0 < w < 1.
This yields the finite measure p,,, given by

i (A) ::/wdu VA e M.
A

(Recall the last part of Exercise 22.) Define the finite measure ¢ = v +
tw. Note that £1(p) € L1(v) and L'(¢) € L'(1y) and we have (using
Proposition 5.31),

/fdgo:/ fdu+/ fwdu Yfe LYy). (1)
X X X
In particular, we may deduce

[ s

By Proposition 5.23 [and its extension seen in class] we have £2(¢) C L (¢p)
and even

<fllva < Ufllgx Vf € L1(0).

£ llon < I llg2 (XN Vf e L2(y).
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Combining the inequalities we find

[ sav

This means that the linear map a : L?(¢) — K C C given by [f] — [y[f]dv
is bounded. Since L2(¢p) is a Hilbert space, Theorem 5.29 implies that there
is an element g € L£L2(y) such that a([f]) = {[f],[g]) for all f € L3(¢). This
implies,

< fllp2 (0(XNY? Vf € L2(gp).

[ sav= | toap vt 2)
X X
By inserting characteristic functions for f we obtain
v(A) :/gdgo VA e M.
A

On the other hand we have v(A) < ¢(A) for all measurable sets A and hence,

Ogﬁ/f‘gdgp:@tggl VAe M:p(A) > 0.

<

We can now apply the Averaging Theorem (Theorem 5.38) to conclude that
0 < g <1 almost everywhere. We modify g on a set of measure zero if
necessary so that 0 < g < 1 everywhere. In particular, if f € £2(p) then
(1—g)f € L2(¢) and gf € L?(p). Combining (1) and (2) we find

/(1—g>fdu=/ fowdp Vf e £2(p).
X X

Set Z, :={r € X : g(x) <1} and Z, := {x € X : g(z) = 1} and define the
measures v,(A) :=v(ANZ,) and vs == v(ANZ;) for all A € M. Since X is
the disjoint union of Z, and Z; we obviously have v = v, + v5;. Taking f to
be the characteristic function of Z; we find that st wdp = 0. Since 0 < w,
we conclude that pu(Zs) = 0. In particular, this implies that p is supported
on Z,, while vy is supported on Zs, so vs L p.

Define now the sequence {f,}nen of functions f,, := > p_,; g"~!. Since
g is bounded, f, is bounded. Multiplying with characteristic functions we
find for measurable sets A,

/A(l—gn)dVZ/A(l—g)fndl/:/Afngwdu'

Note that {1—g¢" },en increases monotonically and converges pointwise to the
characteristic function of Z,. Thus, by the Monotone Convergence Theorem
(Theorem 4.23) or by the Dominated Convergence Theorem (Theorem 4.26)
the left hand side converges to v(AN Z,) = v4(A).

The sequence {f,gw}nen is also increasing monotonically with its u-
integrals over A bounded by v,(A). So the Monotone Convergence Theorem
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(Theorem 4.23) applies and the pointwise limit is a p-integrable function h.
We get

v4) = [ nd

showing existence in (2.) and also v, < p, thus completing the existence
proof for (1.). O

Remark 5.42. The function h appearing in the above Theorem is also called
the Radon-Nikodym derivative, denoted as h = dv,/dpu.

Exercise 26 (adapted from Lang). Let X be a measure space with o-finite
measure g and let p € [1,00). Let 7' : L — L be a bounded linear
map. For each g € L consider the bounded linear map M, : LP — L?
given by f — gf. Assume that 7" and M, commute for all g € L, i.e.,
T oM, = MgoT. Show that T" = M), for some h € L*>. [Hint: Use
Lemma 5.40 to obtain a function w € LP N L* with 0 < w. Then, for
f € LPNL*>® we have

T(wf) = wI(f) = fT(w).

If we define h := T'(w)/w we thus have T'(f) = hf. Prove that h is es-
sentially bounded by contradiction: Assume it is not and consider sets of
positive measure where |h| > ¢ for some constant ¢ and evaluate 7' on the
characteristic function of such sets. Finally, prove that T(f) = hf for all

felr]



