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p5.1 BasisLemma 5.1. Let a, b ≥ 0 and p ≥ 1. Then,

(

a + b

2

)p

≤
ap + bp

2
.Let a, b ≥ 0 and p > 1. Set q suh that 1/p + 1/q = 1. Then,

a1/pb1/q ≤
a

p
+

b

q
.Proof. Exerise.De�nition 5.2. Let X be a measure spae with measure µ and p > 0.

Lp(X,µ, K) := {f : X → Kmeasurable : |f |p integrable} .De�ne also the funtion ‖ · ‖p : Lp(X,µ, K) → R
+
0 given by

‖f‖p :=

(
∫

X
|f |p

)1/p

.Proposition 5.3. The set Lp(X,µ, K) for p ∈ (0,∞) is a vetor spae.Also, ‖ · ‖p is multipliative, i.e., ‖λf‖p = |λ|‖f‖p for all λ ∈ K and f ∈ Lp.Furthermore, if p ≤ 1 the funtion dp : Lp(X,µ, K) × Lp(X,µ, K) → [0,∞)given by dp(f, g) := ‖f − g‖p
p is a pseudo-metri (i.e., satis�es the axioms ofa metri exept for de�niteness).Proof. Exerise.De�nition 5.4. Let X be a measure spae with measure µ. We all ameasurable funtion f : X → K essentially bounded i� there exists a boundedmeasurable funtion g : X → K suh that g = f almost everywhere. Wedenote the set of essentially bounded funtions by L∞(X,µ, K). De�ne alsothe funtion ‖ · ‖∞ : L∞(X,µ, K) → R

+
0 given by

‖f‖∞ := inf{‖g‖sup : g = f a.e. and g bounded measurable}.Proposition 5.5. The set L∞(X,µ, K) is a vetor spae and ‖ · ‖∞ is aseminorm.Proof. Exerise.



2 Robert Oekl � RA NOTES 4 � 15/06/2009Proposition 5.6. Let f, g be measurable maps suh that f = g almost ev-erywhere. Let p ∈ (0,∞]. Then, f ∈ Lp i� g ∈ Lp.Proof. Apply Proposition 4.12 to |f |p and |g|p.Proposition 5.7. Let f ∈ Lp for p ∈ (0,∞). Then, f vanishes outside of a
σ-�nite set.Proof. By Proposition 4.13, |f |p vanishes outside a σ-�nite set and hene sodoes f .Proposition 5.8. Let f ∈ L∞. Then, the set {x : |f(x)| > ‖f‖∞} hasmeasure zero. Moreover, there exists g ∈ L∞ bounded suh that g = falmost everywhere and ‖g‖sup = ‖g‖∞ = ‖f‖∞.Proof. Fix c > 0 and onsider the set Ac := {x : |f(x)| ≥ ‖f‖∞ + c}.Sine there exists a bounded measurable funtion g suh that g = f almosteverywhere and ‖g‖sup < ‖f‖∞+c we must have µ(Ac) = 0. Thus {A1/n}n∈Nis an inreasing sequene of sets of measure zero. So, their union A :=
⋃

n∈N
An = {x : |f(x)| > ‖f‖∞} must have measure zero. De�ne now

g(x) :=

{

f(x) ifx ∈ X \ A

0 ifx ∈ A
.Then, g is measurable, bounded, and g = f almost everywhere. Moreover,

‖g‖sup ≤ ‖f‖∞. On, the other hand, sine g = f almost everywhere wemust have ‖g‖sup ≥ ‖f‖∞ by the de�nition of ‖ · ‖∞. Also, f − g = 0 almosteverywhere and hene ‖f − g‖∞ ≤ ‖0‖sup, i.e., ‖f − g‖∞ = 0 and thus
‖f‖∞ = ‖g‖∞.Proposition 5.9. Let f ∈ Lp for p ∈ (0,∞]. Then ‖f‖p = 0 i� f = 0almost everywhere.Proof. If p < ∞ apply Proposition 4.21 to |f |p. Exerise.Complete theproof for p = ∞.Theorem 5.10 (Hölder's inequality). Let p ∈ [1,∞] and q suh that 1/p +
1/q = 1. Given f ∈ Lp and g ∈ Lq we have fg ∈ L1 and,

‖fg‖1 ≤ ‖f‖p‖g‖q.Proof. First observe that fg is measurable by Proposition 3.18 sine f and
g are measurable.We start with the ase p = 1 and q = ∞. (The ase q = 1 and p = ∞is analogous.) By Proposition 5.8 there is a bounded funtion h ∈ L∞ suhthat h = g almost everywhere and ‖h‖sup = ‖g‖∞. We have

|fh| ≤ |f |‖h‖sup.



Robert Oekl � RA NOTES 4 � 15/06/2009 3Thus, |fh| is bounded from above by an integrable funtion and hene fh isintegrable by Proposition 4.27. But fh = fg almost everywhere and so fg isintegrable by Proposition 4.12. Moreover, integrating the above inequalityover X we obtain,
‖fg‖1 =

∫

X
|fg| =

∫

X
|fh| ≤ ‖h‖sup ∫

X
|f | = ‖f‖1‖g‖∞.It remains to onsider the ase p ∈ (1,∞). If ‖f‖p = 0 or ‖g‖q = 0 then

f or g vansihes almost everywhere by Proposition 5.9. Thus, fg vanishesalmost everywhere and ‖fg‖1 = 0 by the same Proposition (and in partiular
fg ∈ L1). We thus assume now ‖f‖p 6= 0 and ‖g‖q 6= 0. Set

a :=
|f |p

‖f‖p
p
, and b :=

|g|q

‖g‖q
q
.Using the seond inequality of Lemma 5.1 we �nd,

|fg|

‖f‖p‖g‖q
≤

1

p

|f |p

‖f‖p
p

+
1

q

|g|q

‖g‖q
q
.This implies that |fg| is bounded from above by an integrable funtion andis hene integrable by Proposition 4.27. Moreover, integrating both sides ofthe inequality over X yields the inequality that is to be demonstrated.Proposition 5.11 (Minkowski's inequality). Let p ∈ [1,∞] and f, g ∈ Lp.Then,

‖f + g‖p ≤ ‖f‖p + ‖g‖p.In partiular, ‖ · ‖p is a seminorm.Proof. The ase p = 1 is already implied by Proposition 4.15 while the ase
p = ∞ is implied by Proposition 5.5. We may thus assume p ∈ (1,∞). Set
q suh that 1/p + 1/q = 1. We have,

|f + g|p ≤ |f ||f + g|p−1 + |g||f + g|p−1.Notie that |f + g|p−1 ∈ Lq so that the two summands on the right handside are integrable by Theorem 5.10. Integrating on both sides and applyingHölder's inequality to both summands on the right hand side yields,
‖f + g‖p

p ≤ ‖f‖p‖|f + g|p−1‖q + ‖g‖p‖|f + g|p−1‖qNotiing that ‖|f + g|p−1‖q = ‖f + g‖p−1
p we �nd,

‖f + g‖p
p ≤ (‖f‖p + ‖g‖p)‖f + g‖p−1

p .Dividing by ‖f + g‖p−1
p yields the desired inequality. This is nothing butthe triangle inequality for ‖ · ‖p. The other properties making this into aseminorm are immediately veri�ed.



4 Robert Oekl � RA NOTES 4 � 15/06/2009Theorem 5.12. Let p ∈ [1,∞) and {fn}n∈N be a Cauhy sequene in Lp.Then, the sequene onverges to some f ∈ Lp in the ‖ · ‖p-seminorm. Thatis, Lp is omplete. Furthermore, there exists a subsequene whih onvergespointwise almost everywhere to f and for any ǫ > 0 onverges uniformly to
f outside of a set of measure less than ǫ.Proof. Sine {fn}n∈N is Cauhy, there exists a subsequene {fnk

}k∈N suhthat
‖fnl

− fnk
‖p < 2−2k ∀k ∈ N and ∀l ≥ k.De�ne

Yk := {x ∈ X : |fnk+1
(x) − fnk

(x)| ≥ 2−k} ∀k ∈ N.Then,
2−kpµ(Yk) ≤

∫

Yk

|fnk+1
− fnk

|p ≤

∫

X
|fnk+1

− fnk
|p < 2−2kp ∀k ∈ N.This implies, µ(Yk) < 2−kp ≤ 2−k for all k ∈ N. De�ne now Zj :=

⋃∞
k=j Ykfor all j ∈ N. Then, µ(Zj) ≤ 21−j for all j ∈ N.Fix ǫ > 0 and hoose j ∈ N suh that 21−j < ǫ. Let x ∈ X \ Zj . Then,for k ≥ j we have

|fnk+1
(x) − fnk

(x)| < 2−k.Thus, the sum ∑∞
k=1 fnk+1

(x) − fnk
(x) onverges absolutely. In partiular,the limit

f(x) := lim
l→∞

fnl
(x) = fn1

(x) +

∞
∑

l=1

fnl+1
(x) − fnl

(x)exists. For all k ≥ j we have the estimate,
|f(x) − fnk

(x)| =

∣

∣

∣

∣

∣

∞
∑

l=k

fnl+1
(x) − fnl

(x)

∣

∣

∣

∣

∣

≤
∞
∑

l=k

∣

∣fnl+1
(x) − fnl

(x)
∣

∣ ≤ 21−kThus, {fnk
}k∈N onverges to f uniformly outside of Zj , where µ(Zj) < ǫ.Repeating the argument for arbitrarily small ǫ we �nd that f is de�ned on

X \Z, where Z :=
⋂∞

j=1 Zj . Furthermore, {fnk
}k∈N onverges to f pointwiseon X \Z. Note that µ(Z) = 0. By Theorem 3.19, f is measurable on X \Z.We extend f to a measurable funtion on all of X by delaring f(x) = 0 if

x ∈ Z.For �xed k ∈ N onsider the sequene {gl}l∈N of integrable funtionsgiven by
gl := |fnl

− fnk
|p.Sine the sequene {

∫

X gl}l∈N is bounded, lim inf l→∞

∫

X gl exists and wean apply Proposition 4.25. Thus, there exists an integrable funtion g and
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g(x) = lim inf l→∞ gl(x) almost everywhere. We onlude that g = |f − fnk

|palmost everywhere. In partiular, sine g is integrable, f − fnk
∈ Lp and soalso f ∈ Lp. Moreover,

∫

X
|f − fnk

|p ≤ lim inf
l→∞

∫

X
|fnl

− fnk
|p < 2−2kp.In partiular,

‖f − fnk
‖p < 2−2k.So {fnk

}k∈N and therefore also {fn}n∈N onverges to f in the ‖·‖p-seminorm.Theorem 5.13. Let {fn}n∈N be a Cauhy sequene in L∞. Then, the se-quene onverges uniformly almost everywhere to a funtion f ∈ L∞. Fur-thermore, the sequene onverges to f in the L∞-seminorm. In partiular,
L∞ is omplete.Proof. De�ne Zn := {x ∈ X : |fn(x)| > ‖fn‖∞} for all n ∈ N and Yn,m :=
{x ∈ X : |fn(x)− fm(x)| > ‖fn − fm‖∞}. By Proposition 5.8 µ(Zn) = 0 forall n ∈ N and µ(Yn,m) = 0 for all n,m ∈ N. De�ne

Z :=

(

⋃

n∈N

Zn

)

∪





⋃

n,m∈N

Yn,m



 .Then, µ(Z) = 0. So, {fn(x)}n∈N onverges uniformly on X \ Z to somemeasurable funtion f . We extend f to a measurable funtion on all of Xby de�ning f(x) = 0 if x ∈ Z. Exerise.Complete the proof.Theorem 5.14 (Dominated Convergene Theorem in Lp). Let p ∈ [1,∞).Let {fn}n∈N be a sequene of funtions in Lp suh that there exists a realvalued funtion g ∈ Lp with |fn| ≤ g for all n ∈ N. Assume also that
{fn}n∈N onverges pointwise almost everywhere to a measurable funtion f .Then, f ∈ Lp and {fn}n∈N onverges to f in the ‖ · ‖p-seminorm.Proof. Exerise.Prove this by suitably adapting the proof of Theorem 4.26.Hint: Replae |fn − fm| by |fn − fm|p, and apply Theorem 5.12 instead ofProposition 4.22.Proposition 5.15. Let p ∈ [1,∞). Then, S ⊆ Lp is a dense subset.Proof. If f is an integrable simple funtion f , then |f |p is also integrablesimple. So, S is a subset of Lp. Now onsider f ∈ Lp. We need to on-strut a sequene of integrable simple funtions that onverges to f in the
‖ · ‖p-seminorm. Exerise.Do this by appropriately modifying the proof ofProposition 4.27.



6 Robert Oekl � RA NOTES 4 � 15/06/2009Proposition 5.16. The simple maps form a dense subset of L∞.Proof. Let f ∈ L∞ and �x ǫ > 0. The statement follows if we an show thatthere exists a simple map h suh that ‖f−h‖∞ < ǫ. By Proposition 5.8 thereis a bounded map g ∈ L∞ suh that g = f almost everywhere and ‖g‖sup =
‖f‖∞. Sine g is bounded, its image A ⊂ K is bounded and thus ontainedin a ompat set. This means that we an over A by a �nite numberof open balls {Bk}k∈{1,...,n} of radius ǫ. Denote the enters of the balls by
{xk}k∈{1,...,n}. Now take measurable subsets Ck ⊆ Bk suh that Ci∩Cj = ∅ if
i 6= j while still overing A, i.e., A ⊆

⋃

k∈{1,...,n} Ck. (Exerise.Explain howthis an be done.) De�ne Dk := g−1(CK). {Dk}k∈{1,...,k} form a measurablepartition of X. Now set h(x) := xk if x ∈ Dk. Then, h is simple and
‖f − h‖∞ = ‖g − h‖∞ ≤ ‖g − h‖sup < ǫ.Exerise 23. The Monotone Convergene Theorem (Theorem 4.23) and theDominated Convergene Theorem (Theorem 4.26 or 5.14) are not true in L∞.Give a ounterexample to both. More preisely, give a pointwise inreasingsequene {fn}n∈N of real non-negative valued funtions fn ∈ L∞ on somemeasure spae X suh that {fn}n∈N onverges pointwise to some f ∈ L∞,but {fn}n∈N does not onverge to any funtion in the ‖ · ‖∞-seminorm.5.2 Banah and Hilbert spaesDe�nition 5.17. Let V,W be normed vetor spaes. Then, a linear map
α : V → W is alled bounded i� there exists a onstant c ≥ 0 suh that

‖α(v)‖W ≤ c‖v‖V ∀v ∈ V.Proposition 5.18. Let V,W be normed vetor spaes. Then, a linear map
α : V → W is bounded i� it is ontinuous.Proof. Exerise.A omplete normed vetor spae is also alled a Banah spae. We haveseen already that the spaes Lp with p ∈ [1,∞] are vetor spaes with aseminorm ‖ · ‖p and are omplete with respet to this seminorm. In order toonvert a vetor spae with a seminorm into a vetor spae with a norm, wemay quotient by those elemnts whose seminorm is zero.Proposition 5.19. Let V be a vetor spae with a seminorm ‖·‖V . Considerthe subset A := {v ∈ V : ‖v‖V = 0}. Then, A is a vetor subspae. Moreover
v ∼ w ⇐⇒ v − w ∈ A de�nes an equivalene relation and W := V/ ∼ is avetor spae. The seminorm ‖ · ‖V deends to a norm on W via ‖[v]‖W :=
‖v‖V for v ∈ V . Also, if V is omplete with respet to the seminorm ‖ · ‖V ,then W is omplete with respet to the norm ‖ · ‖W .



Robert Oekl � RA NOTES 4 � 15/06/2009 7Proof. If v ∈ A and λ ∈ K then λv ∈ A sine ‖λv‖V = |λ|‖v‖V = 0. Also,if v,w ∈ A, then v + w ∈ A beause ‖v + w‖V ≤ ‖v‖V + ‖w‖V = 0 by thetriangle inequality. So, A is a vetor subspae. That ∼ is an equivalenerelation follow from the fat that A is a vetor spae: ∼ is refexive beause
v − v = 0 ∈ A, it is symmetri beause from u − v ∈ A follows v − u ∈ A,and it is transitive beause from u− v ∈ A and v−w ∈ A follows u−w ∈ A.In order to give W a vetor spae struture we want to de�ne λ[v] := [λv]for v ∈ V and λ ∈ K and [v] + [w] := [v + w] for v,w ∈ V . We have toshow that these de�nitions are well. Suppose v ∈ V and a ∈ A. Then,
λ[v + a] = [λv + λa] = [λv] = λ[v] as required. Similarly, for v,w ∈ V and
a, b ∈ A we have [v + a] + [w + b] = [v + w + a + b] = [v + w] = [v] + [w]as required. For ‖ · ‖W we hek �rst that it is well de�ned. Let v ∈ V and
a ∈ A. Then, ‖[v + a]‖W = ‖v + a‖V ≤ ‖v‖V + ‖a‖V = ‖v‖V = ‖[v]‖W .But also, ‖[v + a]‖W = ‖v + a‖V ≥ ‖v‖V − ‖ − a‖V = ‖v‖V = ‖[v]‖W . Thisshows that ‖ · ‖W is well de�ned. Exerise.Show that ‖ · ‖W is a norm andthat the spae W is omplete if V is omplete.De�nition 5.20. Let p ∈ [1,∞]. Then the quotient spae Lp/ ∼ in thesense of Proposition 5.19 is denoted by Lp. It is a Banah spae.Banah spaes have many useful properties that make it easy to workwith them. So usually, one works with the spaes Lp instead of the spaes
Lp. Nevertheless one an still think of the these as "spaes of funtions"even though they are spaes of equivalene lasses. But (beause of Propo-sition 5.9) two funtions are in one equivalene lass only if they are "essen-tially the same", i.e., equal almost everywhere.Proposition 5.21. Let p, q ∈ (0,∞] and set r ∈ (0,∞] suh that 1/r =
1/p + 1/q. Then, given f ∈ Lp and g ∈ Lq we have fg ∈ Lr. Moreover, thefollowing inequality holds,

‖fg‖r ≤ ‖f‖p‖g‖q.Proof. Exerise.[Hint: For f ∈ Lp and g ∈ Lq apply Hölder's Theorem(Theorem 5.10) to |f |r and |g|r, in the ase r < ∞. Treat the ase r = ∞separately.℄Proposition 5.22. Let 0 < p ≤ q < r ≤ ∞. Then, Lp∩Lr ⊆ Lq. Moreover,if r < ∞,
‖f‖q(r−p)

q ≤ ‖f‖p(r−q)
p ‖f‖r(q−p)

r ∀f ∈ Lp ∩ Lr.If r = ∞ we have,
‖f‖q

q ≤ ‖f‖p
p ‖f‖

q−p
∞ ∀f ∈ Lp ∩ L∞.If p ≥ 1, then also Lp ∩ Lr ⊆ Lq.



8 Robert Oekl � RA NOTES 4 � 15/06/2009Proof. Exerise.Proposition 5.23. Let X be a measure spae with �nite measure µ. Let
0 < p ≤ q ≤ ∞. Then, Lq(X,µ) ⊆ Lp(X,µ). Moreover,

‖f‖p ≤ ‖f‖q (µ(X))1/p−1/q ∀f ∈ Lq(X,µ).If p ≥ 1, then also Lq(X,µ) ⊆ Lp(X,µ).Proof. Exerise.De�nition 5.24. Let V be a omplex vetor spae and 〈·, ·〉 : V × V → C amap. 〈·, ·〉 is alled a sesquilinear form i� it satisifes the following properties:
• 〈u + v,w〉 = 〈u,w〉 + 〈v,w〉 and
〈u, v + w〉 = 〈u, v〉 + 〈u,w〉 for all u, v,w ∈ V .

• 〈λu, v〉 = λ〈u, v〉 and 〈u, λv〉 = λ〈u, v〉 for all λ ∈ C and v ∈ V .
〈·, ·〉 is alled hermitian i� it satisifes in addition the following property:

• 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .
〈·, ·〉 is alled positive i� it satisifes in addition the following property:

• 〈v, v〉 ≥ 0 for all v ∈ V .
〈·, ·〉 is alled de�nite i� it satisifes in addition the following property:

• If 〈v, v〉 = 0 then v = 0 for all v ∈ V .Proposition 5.25 (from Lang). Let V be a omplex vetor spae with apositive hermitian sesquilinear form 〈·, ·〉 : V ×V → C. If v ∈ V is suh that
〈v, v〉 = 0, then 〈v,w〉 = 〈w, v〉 = 0 for all w ∈ V .Proof. Suppose 〈v, v〉 = 0 for a �xed v ∈ V . Fix some w ∈ V . For any t ∈ Rwe have,

0 ≤ 〈tv + w, tv + w〉 = 2tℜ(〈v,w〉) + 〈w,w〉.If ℜ(〈v,w〉) 6= 0 we ould �nd t ∈ R suh that the right hand side wouldbe negative, a ontradition. Hene, we an onlude ℜ(〈v,w〉) = 0, for all
w ∈ V . Thus, also 0 = ℜ(〈v, iw〉) = ℜ(−i〈v,w〉) = ℑ(〈v,w〉) for all w ∈ V .Hene, 〈v,w〉 = 0 and 〈w, v〉 = 〈v,w〉 = 0 for all w ∈ V .Theorem 5.26 (Shwarz Inequality). Let V be a omplex vetor spae witha positive hermitian sesquilinear form 〈·, ·〉 : V ×V → C. Then, the followinginequality is satis�ed:

|〈v,w〉|2 ≤ 〈v, v〉〈w,w〉 ∀v,w ∈ V.



Robert Oekl � RA NOTES 4 � 15/06/2009 9Proof. If 〈v, v〉 = 0 then also 〈v,w〉 = 0 by Proposition 5.25 and the inequal-ity holds. Thus, we may assume α := 〈v, v〉 6= 0 and we set β := −〈w, v〉.By positivity we have,
0 ≤ 〈βv + αw, βv + αw〉.Using sesquilinearity and hermitiity on the right hand side this yields,

0 ≤ |〈v, v〉|2〈w,w〉 − 〈v, v〉|〈v,w〉|2 .(Exerise.Show this.) Sine 〈v, v〉 6= 0 we an divide by it and arrive at therequired inequality.Proposition 5.27. Let V be a omplex vetor spae with a positive hermitiansesquilinear form 〈·, ·〉 : V × V → C. Then, V arries a seminorm given by
‖v‖ :=

√

〈v, v〉. If 〈·, ·〉 is also de�nite then ‖ · ‖ is a norm.Proof. Exerise.Hint: To prove the triangle inequality, show that ‖v+w‖2 ≤
(‖v‖+‖w‖)2 an be derived from the Shwarz inequality (Theorem 5.26).De�nition 5.28. A positive de�nite hermitian sesquilinear form is alsoalled an inner produt or a salar produt. A omplex vetor spae equippedwith suh a form is alled an inner produt spae or a pre-Hilbert spae. Itis alled a Hilbert spae i� it is omplete with respet to the indued norm.Theorem 5.29. Let H be a Hilbert spae and α : H → K a bounded linearmap. Then, there exists a unique element w ∈ H suh that

α(v) = 〈v,w〉 ∀v ∈ H.Proposition 5.30. Consider the map 〈·, ·〉 : L2 × L2 → C given by
〈f, g〉 :=

∫

fg.Then, 〈·, ·〉 is a positive hermitian sesquilinear form on L2. Moreover, theseminorm indued by it aording to Proposition 5.27 is the ‖ · ‖2-seminorm.Also, the map 〈·, ·〉 : L2×L2 → C given by 〈[f ], [g]〉 := 〈f, g〉 de�nes a positivede�nite hermitian sesquilinear form on L2. The norm indued by it is the
‖ · ‖2-norm. This makes L2 into a Hilbert spae.Proof. Exerise.



10 Robert Oekl � RA NOTES 4 � 15/06/20095.3 Relations between measuresProposition 5.31. Let X be a measured spae with σ-algebra M. Let µ1, µ2be positive measures on M. Then, µ := µ1 + µ2 is a positive measure on
(X,M). Moreover, L1(µ) = L1(µ1) ∩ L1(µ2) and

∫

A
f dµ =

∫

A
f dµ1 +

∫

A
f dµ2 ∀f ∈ L1(µ), A ∈ M.Proof. Exerise.De�nition 5.32 (Complex Measure). Let X be a measured spae with σ-algebra M. Then, a map µ : M → C is alled a omplex measure i� itis ountably additive, i.e., satis�es the following property: If {An}n∈N is asequene of elements of M suh that An ∩ Am = ∅ if n 6= m, then

µ

(

⋃

n∈N

An

)

=

∞
∑

n=1

µ(An).Remark 5.33. 1. The above de�nition implies µ(∅) = 0. 2. The onvergeneof the series in the de�nition is absolute sine its limit must be invariantunder reorderings. 3. In ontrast to positive measures, a omplex measure isalways �nite.Exerise 24. Show that the omplex measures on a given σ-algebra form aomplex vetor spae.De�nition 5.34. Let X be a measured spae with σ-algebra M. Let µbe a positive measure on (X,M) and ν a positive or omplex measure on
(X,M). We say that ν is absolutely ontinuous with respet to µ, denoted
ν ≪ µ i� µ(A) = 0 implies ν(A) = 0 for all A ∈ M.De�nition 5.35. Let X be a measured spae with σ-algebra M. Let µ bea positive or omplex measure on (X,M). We say that µ is onentrated on
A ∈ M i� µ(B) = µ(B ∩ A) for all B ∈ M.De�nition 5.36. Let X be a measured spae with σ-algebra M. Let µ, ν bepositive or omplex measures on (X,M). We say that µ and ν are mutuallysingular, denoted µ ⊥ ν, i� there exist disjoint sets A,B ∈ M suh that µis onentrated on A and ν is onentrated on B.Proposition 5.37. Let µ be a positive measure and ν, ν1, ν2 be positive oromplex measures.1. If µ is onentrated on A and ν ≪ µ, then ν is onentrated on A.2. If ν1 ≪ µ and ν2 ⊥ µ, then ν1 ⊥ ν2.3. If ν ≪ µ and ν ⊥ µ, then ν = 0.



Robert Oekl � RA NOTES 4 � 15/06/2009 114. If ν1 ≪ µ and ν2 ≪ µ, then ν1 + ν2 ≪ µ.5. If ν1 ⊥ ν and ν2 ⊥ ν, then ν1 + ν2 ⊥ ν.Proof. Exerise.Theorem 5.38 (Averaging Theorem). Let X be a measure spae with σ-�nite measure µ. Let S ⊆ K be a losed subset and f ∈ L1(X,µ, K). If forany measurable set A of �nite measure we have
1

µ(A)

∫

A
fdµ ∈ S,then f(x) ∈ S for almost all x ∈ X.Proof. Let C := {x ∈ X : f(x) /∈ S}. We need to show that µ(C) = 0.Assume the ontrary, i.e., µ(C) > 0. Write K \ S =

⋃

n∈N
Bn as a ountableunion of open balls {Bn}n∈N. Their preimages are measurable and over C.There is at least one open ball Bn suh that µ(f−1(Bn)) > 0. Say this openball has entre x and radius r. Furthermore, there is a measurable subset

D ⊆ f−1(Bn) suh that 0 < µ(D) < ∞. Then,
∣

∣

∣

∣

1

µ(D)

∫

D
f dµ − x

∣

∣

∣

∣

=
1

µ(D)

∣

∣

∣

∣

∫

D
(f − x) dµ

∣

∣

∣

∣

≤
1

µ(D)

∫

D
|f − x|dµ <

1

µ(D)

∫

D
r dµ = r.In partiular, 1

µ(D)

∫

D f dµ ∈ Bn. But Bn ∩ S = ∅, so we get a ontraditionwith the assumptions.Exerise 25. 1. Explain where in the above proof σ-�niteness was used.2. Extend the proof to the ase where µ is not σ-�nite by replaing f(x) ∈ Swith f(x) ∈ S ∪ {0} in the statement of the Theorem.Lemma 5.39. Let f ∈ L1 and assume ∫A f = 0 for all measureable sets A.Then, f = 0 almost everywhere.Proof. Exerise.Lemma 5.40. Let X be a measure spae with σ-�nite measure µ and let
p ∈ (0,∞). Then, there exists a funtion w ∈ Lp(X,µ) suh that 0 < w < 1.Proof. Let {Xn}n∈N be a sequene of disjoint sets of �nite measure suh that
X =

⋃

n∈N
Xn. De�ne

w(x) :=

(

2−n

1 + µ(Xn)

)1/p ifx ∈ Xn.This has the desired properties. Exerise.Show this.



12 Robert Oekl � RA NOTES 4 � 15/06/2009Theorem 5.41. Let X be a measure spae with σ-algebra M and σ-�nitemeasure µ. Let ν be a �nite measure on (X,M).1. (Lebesgue) Then, there exists a unique deomposition
ν = νa + νs,into �nite measures suh that νa ≪ µ and νs ⊥ µ.2. (Radon-Nikodym) There exists a unique [h] ∈ L1(µ) suh that for all

A ∈ M,
νa(A) =

∫

A
hdµ.Proof. We �rst show the uniqueness of the deomposition ν = νa + νs in(1.). Suppose there is another deomposition ν = ν ′

a + ν ′
s. Note that allthe measures involved here are �nite and thus are also omplex measures.In partiular, we obtain the following equality of omplex measures, νa −

ν ′
a = ν ′

s − νs. However, by Proposition 5.37 the left hand side is absolutelyontinuous with respet to µ while the right hand side is singular with respetto µ. Again by Proposition 5.37, the equality of both sides implies that theymust be zero, i.e., ν ′
a = νa and ν ′

s = νs.To show the uniqueness of [h] ∈ L1(µ) in (2.) we note that given anotherelement [h′] ∈ L1(µ) with the same property, we would get ∫A(h−h′) dµ = 0for all measurable sets A. By Lemma 5.39 then 0 = [h − h′] = [h] − [h′] ∈
L1(µ).We proeed to onstrut the deomposition ν = νa + νs and the element
[h] ∈ L1(µ). By Lemma 5.40, there is a funtion w ∈ L1(µ) with 0 < w < 1.This yields the �nite measure µw, given by

µw(A) :=

∫

A
w dµ ∀A ∈ M.(Reall the last part of Exerise 22.) De�ne the �nite measure ϕ := ν +

µw. Note that L1(ϕ) ⊆ L1(ν) and L1(ϕ) ⊆ L1(µw) and we have (usingProposition 5.31),
∫

X
f dϕ =

∫

X
f dν +

∫

X
fw dµ ∀f ∈ L1(ϕ). (1)In partiular, we may dedue

∣

∣

∣

∣

∫

X
fdν

∣

∣

∣

∣

≤ ‖f‖ν,1 ≤ ‖f‖ϕ,1 ∀f ∈ L1(ϕ).By Proposition 5.23 [and its extension seen in lass℄ we have L2(ϕ) ⊆ L1(ϕ)and even
‖f‖ϕ,1 ≤ ‖f‖ϕ,2 (ϕ(X))1/2 ∀f ∈ L2(ϕ).
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∣

∣

∣

∣

∫

X
fdν

∣

∣

∣

∣

≤ ‖f‖ϕ,2 (ϕ(X))1/2 ∀f ∈ L2(ϕ).This means that the linear map α : L2(ϕ) → K ⊆ C given by [f ] 7→
∫

X [f ]dνis bounded. Sine L2(ϕ) is a Hilbert spae, Theorem 5.29 implies that thereis an element g ∈ L2(ϕ) suh that α([f ]) = 〈[f ], [g]〉 for all f ∈ L2(ϕ). Thisimplies,
∫

X
fdν =

∫

X
fg dϕ ∀f ∈ L2(ϕ) (2)By inserting harateristi funtions for f we obtain

ν(A) =

∫

A
g dϕ ∀A ∈ M.On the other hand we have ν(A) ≤ ϕ(A) for all measurable sets A and hene,

0 ≤
1

ϕ(A)

∫

A
g dϕ =

ν(A)

ϕ(A)
≤ 1 ∀A ∈ M : ϕ(A) > 0.We an now apply the Averaging Theorem (Theorem 5.38) to onlude that

0 ≤ g ≤ 1 almost everywhere. We modify g on a set of measure zero ifneessary so that 0 ≤ g ≤ 1 everywhere. In partiular, if f ∈ L2(ϕ) then
(1 − g)f ∈ L2(ϕ) and gf ∈ L2(ϕ). Combining (1) and (2) we �nd

∫

X
(1 − g)f dν =

∫

X
fgw dµ ∀f ∈ L2(ϕ).Set Za := {x ∈ X : g(x) < 1} and Zs := {x ∈ X : g(x) = 1} and de�ne themeasures νa(A) := ν(A∩Za) and νs := ν(A∩Zs) for all A ∈ M. Sine X isthe disjoint union of Za and Zs we obviously have ν = νa + νs. Taking f tobe the harateristi funtion of Zs we �nd that ∫Zs

w dµ = 0. Sine 0 < w,we onlude that µ(Zs) = 0. In partiular, this implies that µ is supportedon Za, while νs is supported on Zs, so νs ⊥ µ.De�ne now the sequene {fn}n∈N of funtions fn :=
∑n

k=1 gk−1. Sine
g is bounded, fn is bounded. Multiplying with harateristi funtions we�nd for measurable sets A,

∫

A
(1 − gn) dν =

∫

A
(1 − g)fn dν =

∫

A
fngw dµ.Note that {1−gn}n∈N inreases monotonially and onverges pointwise to theharateristi funtion of Za. Thus, by the Monotone Convergene Theorem(Theorem 4.23) or by the Dominated Convergene Theorem (Theorem 4.26)the left hand side onverges to ν(A ∩ Za) = νa(A).The sequene {fngw}n∈N is also inreasing monotonially with its µ-integrals over A bounded by νa(A). So the Monotone Convergene Theorem



14 Robert Oekl � RA NOTES 4 � 15/06/2009(Theorem 4.23) applies and the pointwise limit is a µ-integrable funtion h.We get
νa(A) =

∫

A
hdµ,showing existene in (2.) and also νa ≪ µ, thus ompleting the existeneproof for (1.).Remark 5.42. The funtion h appearing in the above Theorem is also alledthe Radon-Nikodym derivative, denoted as h = dνa/dµ.Exerise 26 (adapted from Lang). Let X be a measure spae with σ-�nitemeasure µ and let p ∈ [1,∞). Let T : Lp → Lp be a bounded linearmap. For eah g ∈ L∞ onsider the bounded linear map Mg : Lp → Lpgiven by f 7→ gf . Assume that T and Mg ommute for all g ∈ L∞, i.e.,

T ◦ Mg = Mg ◦ T . Show that T = Mh for some h ∈ L∞. [Hint: UseLemma 5.40 to obtain a funtion w ∈ Lp ∩ L∞ with 0 < w. Then, for
f ∈ Lp ∩ L∞ we have

T (wf) = wT (f) = fT (w).If we de�ne h := T (w)/w we thus have T (f) = hf . Prove that h is es-sentially bounded by ontradition: Assume it is not and onsider sets ofpositive measure where |h| > c for some onstant c and evaluate T on theharateristi funtion of suh sets. Finally, prove that T (f) = hf for all
f ∈ Lp.℄


