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ourse REAL ANALYSIS5 The spa
es L
p5.1 Basi
sLemma 5.1. Let a, b ≥ 0 and p ≥ 1. Then,

(

a + b

2

)p

≤
ap + bp

2
.Let a, b ≥ 0 and p > 1. Set q su
h that 1/p + 1/q = 1. Then,

a1/pb1/q ≤
a

p
+

b

q
.Proof. Exer
ise.De�nition 5.2. Let X be a measure spa
e with measure µ and p > 0.

Lp(X,µ, K) := {f : X → Kmeasurable : |f |p integrable} .De�ne also the fun
tion ‖ · ‖p : Lp(X,µ, K) → R
+
0 given by

‖f‖p :=

(
∫

X
|f |p

)1/p

.Proposition 5.3. The set Lp(X,µ, K) for p ∈ (0,∞) is a ve
tor spa
e.Also, ‖ · ‖p is multipli
ative, i.e., ‖λf‖p = |λ|‖f‖p for all λ ∈ K and f ∈ Lp.Furthermore, if p ≤ 1 the fun
tion dp : Lp(X,µ, K) × Lp(X,µ, K) → [0,∞)given by dp(f, g) := ‖f − g‖p
p is a pseudo-metri
 (i.e., satis�es the axioms ofa metri
 ex
ept for de�niteness).Proof. Exer
ise.De�nition 5.4. Let X be a measure spa
e with measure µ. We 
all ameasurable fun
tion f : X → K essentially bounded i� there exists a boundedmeasurable fun
tion g : X → K su
h that g = f almost everywhere. Wedenote the set of essentially bounded fun
tions by L∞(X,µ, K). De�ne alsothe fun
tion ‖ · ‖∞ : L∞(X,µ, K) → R

+
0 given by

‖f‖∞ := inf{‖g‖sup : g = f a.e. and g bounded measurable}.Proposition 5.5. The set L∞(X,µ, K) is a ve
tor spa
e and ‖ · ‖∞ is aseminorm.Proof. Exer
ise.
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kl � RA NOTES 4 � 15/06/2009Proposition 5.6. Let f, g be measurable maps su
h that f = g almost ev-erywhere. Let p ∈ (0,∞]. Then, f ∈ Lp i� g ∈ Lp.Proof. Apply Proposition 4.12 to |f |p and |g|p.Proposition 5.7. Let f ∈ Lp for p ∈ (0,∞). Then, f vanishes outside of a
σ-�nite set.Proof. By Proposition 4.13, |f |p vanishes outside a σ-�nite set and hen
e sodoes f .Proposition 5.8. Let f ∈ L∞. Then, the set {x : |f(x)| > ‖f‖∞} hasmeasure zero. Moreover, there exists g ∈ L∞ bounded su
h that g = falmost everywhere and ‖g‖sup = ‖g‖∞ = ‖f‖∞.Proof. Fix c > 0 and 
onsider the set Ac := {x : |f(x)| ≥ ‖f‖∞ + c}.Sin
e there exists a bounded measurable fun
tion g su
h that g = f almosteverywhere and ‖g‖sup < ‖f‖∞+c we must have µ(Ac) = 0. Thus {A1/n}n∈Nis an in
reasing sequen
e of sets of measure zero. So, their union A :=
⋃

n∈N
An = {x : |f(x)| > ‖f‖∞} must have measure zero. De�ne now

g(x) :=

{

f(x) ifx ∈ X \ A

0 ifx ∈ A
.Then, g is measurable, bounded, and g = f almost everywhere. Moreover,

‖g‖sup ≤ ‖f‖∞. On, the other hand, sin
e g = f almost everywhere wemust have ‖g‖sup ≥ ‖f‖∞ by the de�nition of ‖ · ‖∞. Also, f − g = 0 almosteverywhere and hen
e ‖f − g‖∞ ≤ ‖0‖sup, i.e., ‖f − g‖∞ = 0 and thus
‖f‖∞ = ‖g‖∞.Proposition 5.9. Let f ∈ Lp for p ∈ (0,∞]. Then ‖f‖p = 0 i� f = 0almost everywhere.Proof. If p < ∞ apply Proposition 4.21 to |f |p. Exer
ise.Complete theproof for p = ∞.Theorem 5.10 (Hölder's inequality). Let p ∈ [1,∞] and q su
h that 1/p +
1/q = 1. Given f ∈ Lp and g ∈ Lq we have fg ∈ L1 and,

‖fg‖1 ≤ ‖f‖p‖g‖q.Proof. First observe that fg is measurable by Proposition 3.18 sin
e f and
g are measurable.We start with the 
ase p = 1 and q = ∞. (The 
ase q = 1 and p = ∞is analogous.) By Proposition 5.8 there is a bounded fun
tion h ∈ L∞ su
hthat h = g almost everywhere and ‖h‖sup = ‖g‖∞. We have

|fh| ≤ |f |‖h‖sup.
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kl � RA NOTES 4 � 15/06/2009 3Thus, |fh| is bounded from above by an integrable fun
tion and hen
e fh isintegrable by Proposition 4.27. But fh = fg almost everywhere and so fg isintegrable by Proposition 4.12. Moreover, integrating the above inequalityover X we obtain,
‖fg‖1 =

∫

X
|fg| =

∫

X
|fh| ≤ ‖h‖sup ∫

X
|f | = ‖f‖1‖g‖∞.It remains to 
onsider the 
ase p ∈ (1,∞). If ‖f‖p = 0 or ‖g‖q = 0 then

f or g vansihes almost everywhere by Proposition 5.9. Thus, fg vanishesalmost everywhere and ‖fg‖1 = 0 by the same Proposition (and in parti
ular
fg ∈ L1). We thus assume now ‖f‖p 6= 0 and ‖g‖q 6= 0. Set

a :=
|f |p

‖f‖p
p
, and b :=

|g|q

‖g‖q
q
.Using the se
ond inequality of Lemma 5.1 we �nd,

|fg|

‖f‖p‖g‖q
≤

1

p

|f |p

‖f‖p
p

+
1

q

|g|q

‖g‖q
q
.This implies that |fg| is bounded from above by an integrable fun
tion andis hen
e integrable by Proposition 4.27. Moreover, integrating both sides ofthe inequality over X yields the inequality that is to be demonstrated.Proposition 5.11 (Minkowski's inequality). Let p ∈ [1,∞] and f, g ∈ Lp.Then,

‖f + g‖p ≤ ‖f‖p + ‖g‖p.In parti
ular, ‖ · ‖p is a seminorm.Proof. The 
ase p = 1 is already implied by Proposition 4.15 while the 
ase
p = ∞ is implied by Proposition 5.5. We may thus assume p ∈ (1,∞). Set
q su
h that 1/p + 1/q = 1. We have,

|f + g|p ≤ |f ||f + g|p−1 + |g||f + g|p−1.Noti
e that |f + g|p−1 ∈ Lq so that the two summands on the right handside are integrable by Theorem 5.10. Integrating on both sides and applyingHölder's inequality to both summands on the right hand side yields,
‖f + g‖p

p ≤ ‖f‖p‖|f + g|p−1‖q + ‖g‖p‖|f + g|p−1‖qNoti
ing that ‖|f + g|p−1‖q = ‖f + g‖p−1
p we �nd,

‖f + g‖p
p ≤ (‖f‖p + ‖g‖p)‖f + g‖p−1

p .Dividing by ‖f + g‖p−1
p yields the desired inequality. This is nothing butthe triangle inequality for ‖ · ‖p. The other properties making this into aseminorm are immediately veri�ed.



4 Robert Oe
kl � RA NOTES 4 � 15/06/2009Theorem 5.12. Let p ∈ [1,∞) and {fn}n∈N be a Cau
hy sequen
e in Lp.Then, the sequen
e 
onverges to some f ∈ Lp in the ‖ · ‖p-seminorm. Thatis, Lp is 
omplete. Furthermore, there exists a subsequen
e whi
h 
onvergespointwise almost everywhere to f and for any ǫ > 0 
onverges uniformly to
f outside of a set of measure less than ǫ.Proof. Sin
e {fn}n∈N is Cau
hy, there exists a subsequen
e {fnk

}k∈N su
hthat
‖fnl

− fnk
‖p < 2−2k ∀k ∈ N and ∀l ≥ k.De�ne

Yk := {x ∈ X : |fnk+1
(x) − fnk

(x)| ≥ 2−k} ∀k ∈ N.Then,
2−kpµ(Yk) ≤

∫

Yk

|fnk+1
− fnk

|p ≤

∫

X
|fnk+1

− fnk
|p < 2−2kp ∀k ∈ N.This implies, µ(Yk) < 2−kp ≤ 2−k for all k ∈ N. De�ne now Zj :=

⋃∞
k=j Ykfor all j ∈ N. Then, µ(Zj) ≤ 21−j for all j ∈ N.Fix ǫ > 0 and 
hoose j ∈ N su
h that 21−j < ǫ. Let x ∈ X \ Zj . Then,for k ≥ j we have

|fnk+1
(x) − fnk

(x)| < 2−k.Thus, the sum ∑∞
k=1 fnk+1

(x) − fnk
(x) 
onverges absolutely. In parti
ular,the limit

f(x) := lim
l→∞

fnl
(x) = fn1

(x) +

∞
∑

l=1

fnl+1
(x) − fnl

(x)exists. For all k ≥ j we have the estimate,
|f(x) − fnk

(x)| =

∣

∣

∣

∣

∣

∞
∑

l=k

fnl+1
(x) − fnl

(x)

∣

∣

∣

∣

∣

≤
∞
∑

l=k

∣

∣fnl+1
(x) − fnl

(x)
∣

∣ ≤ 21−kThus, {fnk
}k∈N 
onverges to f uniformly outside of Zj , where µ(Zj) < ǫ.Repeating the argument for arbitrarily small ǫ we �nd that f is de�ned on

X \Z, where Z :=
⋂∞

j=1 Zj . Furthermore, {fnk
}k∈N 
onverges to f pointwiseon X \Z. Note that µ(Z) = 0. By Theorem 3.19, f is measurable on X \Z.We extend f to a measurable fun
tion on all of X by de
laring f(x) = 0 if

x ∈ Z.For �xed k ∈ N 
onsider the sequen
e {gl}l∈N of integrable fun
tionsgiven by
gl := |fnl

− fnk
|p.Sin
e the sequen
e {

∫

X gl}l∈N is bounded, lim inf l→∞

∫

X gl exists and we
an apply Proposition 4.25. Thus, there exists an integrable fun
tion g and
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g(x) = lim inf l→∞ gl(x) almost everywhere. We 
on
lude that g = |f − fnk

|palmost everywhere. In parti
ular, sin
e g is integrable, f − fnk
∈ Lp and soalso f ∈ Lp. Moreover,

∫

X
|f − fnk

|p ≤ lim inf
l→∞

∫

X
|fnl

− fnk
|p < 2−2kp.In parti
ular,

‖f − fnk
‖p < 2−2k.So {fnk

}k∈N and therefore also {fn}n∈N 
onverges to f in the ‖·‖p-seminorm.Theorem 5.13. Let {fn}n∈N be a Cau
hy sequen
e in L∞. Then, the se-quen
e 
onverges uniformly almost everywhere to a fun
tion f ∈ L∞. Fur-thermore, the sequen
e 
onverges to f in the L∞-seminorm. In parti
ular,
L∞ is 
omplete.Proof. De�ne Zn := {x ∈ X : |fn(x)| > ‖fn‖∞} for all n ∈ N and Yn,m :=
{x ∈ X : |fn(x)− fm(x)| > ‖fn − fm‖∞}. By Proposition 5.8 µ(Zn) = 0 forall n ∈ N and µ(Yn,m) = 0 for all n,m ∈ N. De�ne

Z :=

(

⋃

n∈N

Zn

)

∪





⋃

n,m∈N

Yn,m



 .Then, µ(Z) = 0. So, {fn(x)}n∈N 
onverges uniformly on X \ Z to somemeasurable fun
tion f . We extend f to a measurable fun
tion on all of Xby de�ning f(x) = 0 if x ∈ Z. Exer
ise.Complete the proof.Theorem 5.14 (Dominated Convergen
e Theorem in Lp). Let p ∈ [1,∞).Let {fn}n∈N be a sequen
e of fun
tions in Lp su
h that there exists a realvalued fun
tion g ∈ Lp with |fn| ≤ g for all n ∈ N. Assume also that
{fn}n∈N 
onverges pointwise almost everywhere to a measurable fun
tion f .Then, f ∈ Lp and {fn}n∈N 
onverges to f in the ‖ · ‖p-seminorm.Proof. Exer
ise.Prove this by suitably adapting the proof of Theorem 4.26.Hint: Repla
e |fn − fm| by |fn − fm|p, and apply Theorem 5.12 instead ofProposition 4.22.Proposition 5.15. Let p ∈ [1,∞). Then, S ⊆ Lp is a dense subset.Proof. If f is an integrable simple fun
tion f , then |f |p is also integrablesimple. So, S is a subset of Lp. Now 
onsider f ∈ Lp. We need to 
on-stru
t a sequen
e of integrable simple fun
tions that 
onverges to f in the
‖ · ‖p-seminorm. Exer
ise.Do this by appropriately modifying the proof ofProposition 4.27.
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kl � RA NOTES 4 � 15/06/2009Proposition 5.16. The simple maps form a dense subset of L∞.Proof. Let f ∈ L∞ and �x ǫ > 0. The statement follows if we 
an show thatthere exists a simple map h su
h that ‖f−h‖∞ < ǫ. By Proposition 5.8 thereis a bounded map g ∈ L∞ su
h that g = f almost everywhere and ‖g‖sup =
‖f‖∞. Sin
e g is bounded, its image A ⊂ K is bounded and thus 
ontainedin a 
ompa
t set. This means that we 
an 
over A by a �nite numberof open balls {Bk}k∈{1,...,n} of radius ǫ. Denote the 
enters of the balls by
{xk}k∈{1,...,n}. Now take measurable subsets Ck ⊆ Bk su
h that Ci∩Cj = ∅ if
i 6= j while still 
overing A, i.e., A ⊆

⋃

k∈{1,...,n} Ck. (Exer
ise.Explain howthis 
an be done.) De�ne Dk := g−1(CK). {Dk}k∈{1,...,k} form a measurablepartition of X. Now set h(x) := xk if x ∈ Dk. Then, h is simple and
‖f − h‖∞ = ‖g − h‖∞ ≤ ‖g − h‖sup < ǫ.Exer
ise 23. The Monotone Convergen
e Theorem (Theorem 4.23) and theDominated Convergen
e Theorem (Theorem 4.26 or 5.14) are not true in L∞.Give a 
ounterexample to both. More pre
isely, give a pointwise in
reasingsequen
e {fn}n∈N of real non-negative valued fun
tions fn ∈ L∞ on somemeasure spa
e X su
h that {fn}n∈N 
onverges pointwise to some f ∈ L∞,but {fn}n∈N does not 
onverge to any fun
tion in the ‖ · ‖∞-seminorm.5.2 Bana
h and Hilbert spa
esDe�nition 5.17. Let V,W be normed ve
tor spa
es. Then, a linear map
α : V → W is 
alled bounded i� there exists a 
onstant c ≥ 0 su
h that

‖α(v)‖W ≤ c‖v‖V ∀v ∈ V.Proposition 5.18. Let V,W be normed ve
tor spa
es. Then, a linear map
α : V → W is bounded i� it is 
ontinuous.Proof. Exer
ise.A 
omplete normed ve
tor spa
e is also 
alled a Bana
h spa
e. We haveseen already that the spa
es Lp with p ∈ [1,∞] are ve
tor spa
es with aseminorm ‖ · ‖p and are 
omplete with respe
t to this seminorm. In order to
onvert a ve
tor spa
e with a seminorm into a ve
tor spa
e with a norm, wemay quotient by those elemnts whose seminorm is zero.Proposition 5.19. Let V be a ve
tor spa
e with a seminorm ‖·‖V . Considerthe subset A := {v ∈ V : ‖v‖V = 0}. Then, A is a ve
tor subspa
e. Moreover
v ∼ w ⇐⇒ v − w ∈ A de�nes an equivalen
e relation and W := V/ ∼ is ave
tor spa
e. The seminorm ‖ · ‖V de
ends to a norm on W via ‖[v]‖W :=
‖v‖V for v ∈ V . Also, if V is 
omplete with respe
t to the seminorm ‖ · ‖V ,then W is 
omplete with respe
t to the norm ‖ · ‖W .
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kl � RA NOTES 4 � 15/06/2009 7Proof. If v ∈ A and λ ∈ K then λv ∈ A sin
e ‖λv‖V = |λ|‖v‖V = 0. Also,if v,w ∈ A, then v + w ∈ A be
ause ‖v + w‖V ≤ ‖v‖V + ‖w‖V = 0 by thetriangle inequality. So, A is a ve
tor subspa
e. That ∼ is an equivalen
erelation follow from the fa
t that A is a ve
tor spa
e: ∼ is refexive be
ause
v − v = 0 ∈ A, it is symmetri
 be
ause from u − v ∈ A follows v − u ∈ A,and it is transitive be
ause from u− v ∈ A and v−w ∈ A follows u−w ∈ A.In order to give W a ve
tor spa
e stru
ture we want to de�ne λ[v] := [λv]for v ∈ V and λ ∈ K and [v] + [w] := [v + w] for v,w ∈ V . We have toshow that these de�nitions are well. Suppose v ∈ V and a ∈ A. Then,
λ[v + a] = [λv + λa] = [λv] = λ[v] as required. Similarly, for v,w ∈ V and
a, b ∈ A we have [v + a] + [w + b] = [v + w + a + b] = [v + w] = [v] + [w]as required. For ‖ · ‖W we 
he
k �rst that it is well de�ned. Let v ∈ V and
a ∈ A. Then, ‖[v + a]‖W = ‖v + a‖V ≤ ‖v‖V + ‖a‖V = ‖v‖V = ‖[v]‖W .But also, ‖[v + a]‖W = ‖v + a‖V ≥ ‖v‖V − ‖ − a‖V = ‖v‖V = ‖[v]‖W . Thisshows that ‖ · ‖W is well de�ned. Exer
ise.Show that ‖ · ‖W is a norm andthat the spa
e W is 
omplete if V is 
omplete.De�nition 5.20. Let p ∈ [1,∞]. Then the quotient spa
e Lp/ ∼ in thesense of Proposition 5.19 is denoted by Lp. It is a Bana
h spa
e.Bana
h spa
es have many useful properties that make it easy to workwith them. So usually, one works with the spa
es Lp instead of the spa
es
Lp. Nevertheless one 
an still think of the these as "spa
es of fun
tions"even though they are spa
es of equivalen
e 
lasses. But (be
ause of Propo-sition 5.9) two fun
tions are in one equivalen
e 
lass only if they are "essen-tially the same", i.e., equal almost everywhere.Proposition 5.21. Let p, q ∈ (0,∞] and set r ∈ (0,∞] su
h that 1/r =
1/p + 1/q. Then, given f ∈ Lp and g ∈ Lq we have fg ∈ Lr. Moreover, thefollowing inequality holds,

‖fg‖r ≤ ‖f‖p‖g‖q.Proof. Exer
ise.[Hint: For f ∈ Lp and g ∈ Lq apply Hölder's Theorem(Theorem 5.10) to |f |r and |g|r, in the 
ase r < ∞. Treat the 
ase r = ∞separately.℄Proposition 5.22. Let 0 < p ≤ q < r ≤ ∞. Then, Lp∩Lr ⊆ Lq. Moreover,if r < ∞,
‖f‖q(r−p)

q ≤ ‖f‖p(r−q)
p ‖f‖r(q−p)

r ∀f ∈ Lp ∩ Lr.If r = ∞ we have,
‖f‖q

q ≤ ‖f‖p
p ‖f‖

q−p
∞ ∀f ∈ Lp ∩ L∞.If p ≥ 1, then also Lp ∩ Lr ⊆ Lq.



8 Robert Oe
kl � RA NOTES 4 � 15/06/2009Proof. Exer
ise.Proposition 5.23. Let X be a measure spa
e with �nite measure µ. Let
0 < p ≤ q ≤ ∞. Then, Lq(X,µ) ⊆ Lp(X,µ). Moreover,

‖f‖p ≤ ‖f‖q (µ(X))1/p−1/q ∀f ∈ Lq(X,µ).If p ≥ 1, then also Lq(X,µ) ⊆ Lp(X,µ).Proof. Exer
ise.De�nition 5.24. Let V be a 
omplex ve
tor spa
e and 〈·, ·〉 : V × V → C amap. 〈·, ·〉 is 
alled a sesquilinear form i� it satisifes the following properties:
• 〈u + v,w〉 = 〈u,w〉 + 〈v,w〉 and
〈u, v + w〉 = 〈u, v〉 + 〈u,w〉 for all u, v,w ∈ V .

• 〈λu, v〉 = λ〈u, v〉 and 〈u, λv〉 = λ〈u, v〉 for all λ ∈ C and v ∈ V .
〈·, ·〉 is 
alled hermitian i� it satisifes in addition the following property:

• 〈u, v〉 = 〈v, u〉 for all u, v ∈ V .
〈·, ·〉 is 
alled positive i� it satisifes in addition the following property:

• 〈v, v〉 ≥ 0 for all v ∈ V .
〈·, ·〉 is 
alled de�nite i� it satisifes in addition the following property:

• If 〈v, v〉 = 0 then v = 0 for all v ∈ V .Proposition 5.25 (from Lang). Let V be a 
omplex ve
tor spa
e with apositive hermitian sesquilinear form 〈·, ·〉 : V ×V → C. If v ∈ V is su
h that
〈v, v〉 = 0, then 〈v,w〉 = 〈w, v〉 = 0 for all w ∈ V .Proof. Suppose 〈v, v〉 = 0 for a �xed v ∈ V . Fix some w ∈ V . For any t ∈ Rwe have,

0 ≤ 〈tv + w, tv + w〉 = 2tℜ(〈v,w〉) + 〈w,w〉.If ℜ(〈v,w〉) 6= 0 we 
ould �nd t ∈ R su
h that the right hand side wouldbe negative, a 
ontradi
tion. Hen
e, we 
an 
on
lude ℜ(〈v,w〉) = 0, for all
w ∈ V . Thus, also 0 = ℜ(〈v, iw〉) = ℜ(−i〈v,w〉) = ℑ(〈v,w〉) for all w ∈ V .Hen
e, 〈v,w〉 = 0 and 〈w, v〉 = 〈v,w〉 = 0 for all w ∈ V .Theorem 5.26 (S
hwarz Inequality). Let V be a 
omplex ve
tor spa
e witha positive hermitian sesquilinear form 〈·, ·〉 : V ×V → C. Then, the followinginequality is satis�ed:

|〈v,w〉|2 ≤ 〈v, v〉〈w,w〉 ∀v,w ∈ V.
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kl � RA NOTES 4 � 15/06/2009 9Proof. If 〈v, v〉 = 0 then also 〈v,w〉 = 0 by Proposition 5.25 and the inequal-ity holds. Thus, we may assume α := 〈v, v〉 6= 0 and we set β := −〈w, v〉.By positivity we have,
0 ≤ 〈βv + αw, βv + αw〉.Using sesquilinearity and hermiti
ity on the right hand side this yields,

0 ≤ |〈v, v〉|2〈w,w〉 − 〈v, v〉|〈v,w〉|2 .(Exer
ise.Show this.) Sin
e 〈v, v〉 6= 0 we 
an divide by it and arrive at therequired inequality.Proposition 5.27. Let V be a 
omplex ve
tor spa
e with a positive hermitiansesquilinear form 〈·, ·〉 : V × V → C. Then, V 
arries a seminorm given by
‖v‖ :=

√

〈v, v〉. If 〈·, ·〉 is also de�nite then ‖ · ‖ is a norm.Proof. Exer
ise.Hint: To prove the triangle inequality, show that ‖v+w‖2 ≤
(‖v‖+‖w‖)2 
an be derived from the S
hwarz inequality (Theorem 5.26).De�nition 5.28. A positive de�nite hermitian sesquilinear form is also
alled an inner produ
t or a s
alar produ
t. A 
omplex ve
tor spa
e equippedwith su
h a form is 
alled an inner produ
t spa
e or a pre-Hilbert spa
e. Itis 
alled a Hilbert spa
e i� it is 
omplete with respe
t to the indu
ed norm.Theorem 5.29. Let H be a Hilbert spa
e and α : H → K a bounded linearmap. Then, there exists a unique element w ∈ H su
h that

α(v) = 〈v,w〉 ∀v ∈ H.Proposition 5.30. Consider the map 〈·, ·〉 : L2 × L2 → C given by
〈f, g〉 :=

∫

fg.Then, 〈·, ·〉 is a positive hermitian sesquilinear form on L2. Moreover, theseminorm indu
ed by it a

ording to Proposition 5.27 is the ‖ · ‖2-seminorm.Also, the map 〈·, ·〉 : L2×L2 → C given by 〈[f ], [g]〉 := 〈f, g〉 de�nes a positivede�nite hermitian sesquilinear form on L2. The norm indu
ed by it is the
‖ · ‖2-norm. This makes L2 into a Hilbert spa
e.Proof. Exer
ise.
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kl � RA NOTES 4 � 15/06/20095.3 Relations between measuresProposition 5.31. Let X be a measured spa
e with σ-algebra M. Let µ1, µ2be positive measures on M. Then, µ := µ1 + µ2 is a positive measure on
(X,M). Moreover, L1(µ) = L1(µ1) ∩ L1(µ2) and

∫

A
f dµ =

∫

A
f dµ1 +

∫

A
f dµ2 ∀f ∈ L1(µ), A ∈ M.Proof. Exer
ise.De�nition 5.32 (Complex Measure). Let X be a measured spa
e with σ-algebra M. Then, a map µ : M → C is 
alled a 
omplex measure i� itis 
ountably additive, i.e., satis�es the following property: If {An}n∈N is asequen
e of elements of M su
h that An ∩ Am = ∅ if n 6= m, then

µ

(

⋃

n∈N

An

)

=

∞
∑

n=1

µ(An).Remark 5.33. 1. The above de�nition implies µ(∅) = 0. 2. The 
onvergen
eof the series in the de�nition is absolute sin
e its limit must be invariantunder reorderings. 3. In 
ontrast to positive measures, a 
omplex measure isalways �nite.Exer
ise 24. Show that the 
omplex measures on a given σ-algebra form a
omplex ve
tor spa
e.De�nition 5.34. Let X be a measured spa
e with σ-algebra M. Let µbe a positive measure on (X,M) and ν a positive or 
omplex measure on
(X,M). We say that ν is absolutely 
ontinuous with respe
t to µ, denoted
ν ≪ µ i� µ(A) = 0 implies ν(A) = 0 for all A ∈ M.De�nition 5.35. Let X be a measured spa
e with σ-algebra M. Let µ bea positive or 
omplex measure on (X,M). We say that µ is 
on
entrated on
A ∈ M i� µ(B) = µ(B ∩ A) for all B ∈ M.De�nition 5.36. Let X be a measured spa
e with σ-algebra M. Let µ, ν bepositive or 
omplex measures on (X,M). We say that µ and ν are mutuallysingular, denoted µ ⊥ ν, i� there exist disjoint sets A,B ∈ M su
h that µis 
on
entrated on A and ν is 
on
entrated on B.Proposition 5.37. Let µ be a positive measure and ν, ν1, ν2 be positive or
omplex measures.1. If µ is 
on
entrated on A and ν ≪ µ, then ν is 
on
entrated on A.2. If ν1 ≪ µ and ν2 ⊥ µ, then ν1 ⊥ ν2.3. If ν ≪ µ and ν ⊥ µ, then ν = 0.
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kl � RA NOTES 4 � 15/06/2009 114. If ν1 ≪ µ and ν2 ≪ µ, then ν1 + ν2 ≪ µ.5. If ν1 ⊥ ν and ν2 ⊥ ν, then ν1 + ν2 ⊥ ν.Proof. Exer
ise.Theorem 5.38 (Averaging Theorem). Let X be a measure spa
e with σ-�nite measure µ. Let S ⊆ K be a 
losed subset and f ∈ L1(X,µ, K). If forany measurable set A of �nite measure we have
1

µ(A)

∫

A
fdµ ∈ S,then f(x) ∈ S for almost all x ∈ X.Proof. Let C := {x ∈ X : f(x) /∈ S}. We need to show that µ(C) = 0.Assume the 
ontrary, i.e., µ(C) > 0. Write K \ S =

⋃

n∈N
Bn as a 
ountableunion of open balls {Bn}n∈N. Their preimages are measurable and 
over C.There is at least one open ball Bn su
h that µ(f−1(Bn)) > 0. Say this openball has 
entre x and radius r. Furthermore, there is a measurable subset

D ⊆ f−1(Bn) su
h that 0 < µ(D) < ∞. Then,
∣

∣

∣

∣

1

µ(D)

∫

D
f dµ − x

∣

∣

∣

∣

=
1

µ(D)

∣

∣

∣

∣

∫

D
(f − x) dµ

∣

∣

∣

∣

≤
1

µ(D)

∫

D
|f − x|dµ <

1

µ(D)

∫

D
r dµ = r.In parti
ular, 1

µ(D)

∫

D f dµ ∈ Bn. But Bn ∩ S = ∅, so we get a 
ontradi
tionwith the assumptions.Exer
ise 25. 1. Explain where in the above proof σ-�niteness was used.2. Extend the proof to the 
ase where µ is not σ-�nite by repla
ing f(x) ∈ Swith f(x) ∈ S ∪ {0} in the statement of the Theorem.Lemma 5.39. Let f ∈ L1 and assume ∫A f = 0 for all measureable sets A.Then, f = 0 almost everywhere.Proof. Exer
ise.Lemma 5.40. Let X be a measure spa
e with σ-�nite measure µ and let
p ∈ (0,∞). Then, there exists a fun
tion w ∈ Lp(X,µ) su
h that 0 < w < 1.Proof. Let {Xn}n∈N be a sequen
e of disjoint sets of �nite measure su
h that
X =

⋃

n∈N
Xn. De�ne

w(x) :=

(

2−n

1 + µ(Xn)

)1/p ifx ∈ Xn.This has the desired properties. Exer
ise.Show this.
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kl � RA NOTES 4 � 15/06/2009Theorem 5.41. Let X be a measure spa
e with σ-algebra M and σ-�nitemeasure µ. Let ν be a �nite measure on (X,M).1. (Lebesgue) Then, there exists a unique de
omposition
ν = νa + νs,into �nite measures su
h that νa ≪ µ and νs ⊥ µ.2. (Radon-Nikodym) There exists a unique [h] ∈ L1(µ) su
h that for all

A ∈ M,
νa(A) =

∫

A
hdµ.Proof. We �rst show the uniqueness of the de
omposition ν = νa + νs in(1.). Suppose there is another de
omposition ν = ν ′

a + ν ′
s. Note that allthe measures involved here are �nite and thus are also 
omplex measures.In parti
ular, we obtain the following equality of 
omplex measures, νa −

ν ′
a = ν ′

s − νs. However, by Proposition 5.37 the left hand side is absolutely
ontinuous with respe
t to µ while the right hand side is singular with respe
tto µ. Again by Proposition 5.37, the equality of both sides implies that theymust be zero, i.e., ν ′
a = νa and ν ′

s = νs.To show the uniqueness of [h] ∈ L1(µ) in (2.) we note that given anotherelement [h′] ∈ L1(µ) with the same property, we would get ∫A(h−h′) dµ = 0for all measurable sets A. By Lemma 5.39 then 0 = [h − h′] = [h] − [h′] ∈
L1(µ).We pro
eed to 
onstru
t the de
omposition ν = νa + νs and the element
[h] ∈ L1(µ). By Lemma 5.40, there is a fun
tion w ∈ L1(µ) with 0 < w < 1.This yields the �nite measure µw, given by

µw(A) :=

∫

A
w dµ ∀A ∈ M.(Re
all the last part of Exer
ise 22.) De�ne the �nite measure ϕ := ν +

µw. Note that L1(ϕ) ⊆ L1(ν) and L1(ϕ) ⊆ L1(µw) and we have (usingProposition 5.31),
∫

X
f dϕ =

∫

X
f dν +

∫

X
fw dµ ∀f ∈ L1(ϕ). (1)In parti
ular, we may dedu
e

∣

∣

∣

∣

∫

X
fdν

∣

∣

∣

∣

≤ ‖f‖ν,1 ≤ ‖f‖ϕ,1 ∀f ∈ L1(ϕ).By Proposition 5.23 [and its extension seen in 
lass℄ we have L2(ϕ) ⊆ L1(ϕ)and even
‖f‖ϕ,1 ≤ ‖f‖ϕ,2 (ϕ(X))1/2 ∀f ∈ L2(ϕ).
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∣

∣

∣

∣

∫

X
fdν

∣

∣

∣

∣

≤ ‖f‖ϕ,2 (ϕ(X))1/2 ∀f ∈ L2(ϕ).This means that the linear map α : L2(ϕ) → K ⊆ C given by [f ] 7→
∫

X [f ]dνis bounded. Sin
e L2(ϕ) is a Hilbert spa
e, Theorem 5.29 implies that thereis an element g ∈ L2(ϕ) su
h that α([f ]) = 〈[f ], [g]〉 for all f ∈ L2(ϕ). Thisimplies,
∫

X
fdν =

∫

X
fg dϕ ∀f ∈ L2(ϕ) (2)By inserting 
hara
teristi
 fun
tions for f we obtain

ν(A) =

∫

A
g dϕ ∀A ∈ M.On the other hand we have ν(A) ≤ ϕ(A) for all measurable sets A and hen
e,

0 ≤
1

ϕ(A)

∫

A
g dϕ =

ν(A)

ϕ(A)
≤ 1 ∀A ∈ M : ϕ(A) > 0.We 
an now apply the Averaging Theorem (Theorem 5.38) to 
on
lude that

0 ≤ g ≤ 1 almost everywhere. We modify g on a set of measure zero ifne
essary so that 0 ≤ g ≤ 1 everywhere. In parti
ular, if f ∈ L2(ϕ) then
(1 − g)f ∈ L2(ϕ) and gf ∈ L2(ϕ). Combining (1) and (2) we �nd

∫

X
(1 − g)f dν =

∫

X
fgw dµ ∀f ∈ L2(ϕ).Set Za := {x ∈ X : g(x) < 1} and Zs := {x ∈ X : g(x) = 1} and de�ne themeasures νa(A) := ν(A∩Za) and νs := ν(A∩Zs) for all A ∈ M. Sin
e X isthe disjoint union of Za and Zs we obviously have ν = νa + νs. Taking f tobe the 
hara
teristi
 fun
tion of Zs we �nd that ∫Zs

w dµ = 0. Sin
e 0 < w,we 
on
lude that µ(Zs) = 0. In parti
ular, this implies that µ is supportedon Za, while νs is supported on Zs, so νs ⊥ µ.De�ne now the sequen
e {fn}n∈N of fun
tions fn :=
∑n

k=1 gk−1. Sin
e
g is bounded, fn is bounded. Multiplying with 
hara
teristi
 fun
tions we�nd for measurable sets A,

∫

A
(1 − gn) dν =

∫

A
(1 − g)fn dν =

∫

A
fngw dµ.Note that {1−gn}n∈N in
reases monotoni
ally and 
onverges pointwise to the
hara
teristi
 fun
tion of Za. Thus, by the Monotone Convergen
e Theorem(Theorem 4.23) or by the Dominated Convergen
e Theorem (Theorem 4.26)the left hand side 
onverges to ν(A ∩ Za) = νa(A).The sequen
e {fngw}n∈N is also in
reasing monotoni
ally with its µ-integrals over A bounded by νa(A). So the Monotone Convergen
e Theorem
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tion h.We get
νa(A) =

∫

A
hdµ,showing existen
e in (2.) and also νa ≪ µ, thus 
ompleting the existen
eproof for (1.).Remark 5.42. The fun
tion h appearing in the above Theorem is also 
alledthe Radon-Nikodym derivative, denoted as h = dνa/dµ.Exer
ise 26 (adapted from Lang). Let X be a measure spa
e with σ-�nitemeasure µ and let p ∈ [1,∞). Let T : Lp → Lp be a bounded linearmap. For ea
h g ∈ L∞ 
onsider the bounded linear map Mg : Lp → Lpgiven by f 7→ gf . Assume that T and Mg 
ommute for all g ∈ L∞, i.e.,

T ◦ Mg = Mg ◦ T . Show that T = Mh for some h ∈ L∞. [Hint: UseLemma 5.40 to obtain a fun
tion w ∈ Lp ∩ L∞ with 0 < w. Then, for
f ∈ Lp ∩ L∞ we have

T (wf) = wT (f) = fT (w).If we de�ne h := T (w)/w we thus have T (f) = hf . Prove that h is es-sentially bounded by 
ontradi
tion: Assume it is not and 
onsider sets ofpositive measure where |h| > c for some 
onstant c and evaluate T on the
hara
teristi
 fun
tion of su
h sets. Finally, prove that T (f) = hf for all
f ∈ Lp.℄


